
Micropython-Stubber
Release 1.3.8

Jos Verlinde

Dec 02, 2021

CONTENTS:

1 Boost MicroPython productivity in VSCode 1
1.1 Licensing . 2

2 Approach to collecting stub information 3
2.1 Stub collection process . 3
2.2 Firmware Stubs format and limitations . 4
2.3 Firmware naming convention . 4

3 Using stubs 5
3.1 Manual configuration . 5
3.2 Using micropy-cli . 5

4 VSCode and Pylint configuration 7
4.1 Recommended order of the stubs in your config: . 7
4.2 Relevant VSCode settings . 7
4.3 pylint . 9
4.4 Microsoft Python Language Server settings - Deprecated . 9

5 Create Firmware Stubs 11
5.1 Running the script . 11
5.2 Generating Stubs for a specific Firmware . 12
5.3 Downloading the files . 12
5.4 Custom firmware . 13
5.5 The Unstubbables . 13

6 CPython and Frozen modules 15
6.1 Frozen Modules . 15
6.2 Collect Frozen Stubs (micropython) . 15
6.3 Postprocessing . 16

7 Repo structure 17
7.1 This and sister repos . 17
7.2 Structure of this repo . 18
7.3 Naming Convention and Stub folder structure . 18
7.4 Create a symbolic link . 19

8 Stubs 21
8.1 Firmware and libraries . 21
8.2 Included custom stubs . 21

9 References 23

i

9.1 Inspiration . 23
9.2 Documentation on Type hints . 24

10 Changelog 25
10.1 documentation . 25
10.2 createstubs - version 1.4 . 25
10.3 createstubs.py - version 1.3.16 . 25

11 TO-DO (provisional) 27
11.1 working on it . 27

12 Developing 29
12.1 Windows 10 . 29
12.2 Github codespaces . 29
12.3 Wrestling with two pythons . 30
12.4 Minification . 30
12.5 Testing . 30
12.6 github actions . 31

13 Testing 33
13.1 testing & debugging createstubs.py . 33
13.2 platform detection . 33
13.3 Code Coverage . 34

14 API Reference 35
14.1 stub_lvgl . 35
14.2 main . 35
14.3 createstubs . 36
14.4 get_mpy . 38
14.5 get_lobo . 40
14.6 update_stubs . 41
14.7 utils . 41
14.8 get_cpython . 43
14.9 get_all_frozen . 44
14.10 basicgit . 45
14.11 downloader . 46
14.12 add_class_init . 46

15 Indices and tables 49

Python Module Index 51

Index 53

ii

CHAPTER

ONE

BOOST MICROPYTHON PRODUCTIVITY IN VSCODE

The intellisense and code linting that is so prevalent in modern editors, does not work out-of-the-gate for MicroPython
projects. While the language is Python, the modules used are different from CPython , and also different ports have
different modules and classes , or the same class with different parameters.

Writing MicroPython code in a modern editor should not need to involve keeping a browser open to check for the exact
parameters to read a sensor, light-up a led or send a network request.

Fortunately with some additional configuration and data, it is possible to make the editors understand your flavor of
MicroPython. even if you run a on-off custom firmware version.

In order to achieve this a few things are needed:

1. Stub files for the native / enabled modules in the firmware using PEP 484 Type Hints

2. Specific configuration of the VSCode Python extensions

3. Specific configuration of Pylint

4. Suppression of warnings that collide with the MicroPython principals or code optimization.

With that in place, VSCode will understand MicroPython for the most part, and help you to write code, and catch more
errors before deploying it to your board.

Note that the above is not limited to VSCode and pylint, but it happens to be the combination that I use.

A lot of subs have already been generated and are shared on github or other means, so it is quite likely that you can just
grab a copy to be productive in a few minutes.

For now you will need to configure this by hand, or use the micropy cli tool

1. The sister-repo [MicroPython-stubs][stubs-repo] contains [all stubs][all-stubs] I have collected with the help of
others, and which can be used directly. That repo also contains examples configuration files that can be easily
adopted to your setup.

2. A second repo [micropy-stubs repo][stubs-repo2] maintained by BradenM, also contains stubs but in a structure
used and distributed by the micropy-cli tool. you should use micropy-cli to consume stubs in this repo.

The (stretch) goal is to create a VSCode add-in to simplify the configuration, and allow easy switching between different
firmwares and versions.

1

Micropython-Stubber, Release 1.3.8

1.1 Licensing

MicroPython-Stubber is licensed under the MIT license, and all contributions should follow this LICENSE.

2 Chapter 1. Boost MicroPython productivity in VSCode

https://github.com/Josverl/micropython-stubber/blob/master/LICENSE

CHAPTER

TWO

APPROACH TO COLLECTING STUB INFORMATION

The stubs are used by 3 components.

1. pylint

2. the VSCode Pylance Language Server

3. the VSCode Python add-in

These 3 tools work together to provide code completion/prediction, type checking and all the other good things. For
this the order in which these tools use, the stub folders is significant, and best results are when all use the same order.

In most cases the best results are achieved by the below setup:

![stub processing order][]

1. Your own source files, including any libraries you add to your project. This can be a single libs folder or multiple
directories. There is no need to run stubber on your source or libraries.

2. The CPython common stubs. These stubs are handcrafted to allow MicroPython script to run on a CPython
system. There are only a limited number of these stubs and while they are not intended to be used to provide
type hints, they do provide valuable information. Note that for some modules (such as the gc, time and sys
modules) this approach does not work.

3. Frozen stubs. Most micropython firmwares include a number of python modules that have been included in the
firmware as frozen modules in order to take up less memory. These modules have been extracted from the source
code.

4. Firmware Stubs. For all other modules that are included on the board, [micropython-stubber] or [micropy-cli]
has been used to extract as much information as available, and provide that as stubs. While there is a lot of relevant
and useful information for code completion, it does unfortunately not provide all details regarding parameters
that the above options may provide.

2.1 Stub collection process

• The CPython common stubs are periodically collected from the [micropython-lib][] or the [pycopy-lib][].

• The Frozen stubs are collected from the repos of [micropython][] + [micropython-lib][] and from the [loboris][]
repo the methods to gather these differs per firmware family , and there are differences between versions how
these are stored , and retrieved. where possible this is done per port and board, or if not possible the common
configuration for has been included.

• the Firmware stubs are generated directly on a MicroPython board.

3

Micropython-Stubber, Release 1.3.8

2.2 Firmware Stubs format and limitations

1. No function parameters are generated

2. No return types are generated

3. Instances of imported classes have no type (due to 2)

4. The stubs use the .py extension rather than .pyi (for autocomplete to work)

5. Due to the method of generation nested modules are included, rather than referenced. While this leads to some-
what larger stubs, this should not be limiting for using the stubs on a PC.

6.

2.3 Firmware naming convention

The firmware naming conventions is most relevant to provide clear folder names when selecting which stubs to use.

for stubfiles: {firmware}-{port}-{version}[-{build}]

for frozen modules : {firmware}-{version}-frozen

• firmware: lowercase

– micropython | loboris | pycopy | . . .

• port: lowercase , as reported by os.implementation.platform

– esp32 | linux | win32 | esp32_lobo

• version : digits only , dots replaced by underscore, follow version in documentation rather than semver

– 1_13

– 1_9_4

• build, only for nightly build, the build nr. extracted from the git tag

– Nothing , for released versions

– 103

– N (short notation)

4 Chapter 2. Approach to collecting stub information

CHAPTER

THREE

USING STUBS

3.1 Manual configuration

The manual configuration, including sample configuration files is described in detail in the sister-repo [micropython-
stubs][] section [using-the-stubs][]

3.2 Using micropy-cli

‘micropy-cli’ is command line tool for managing MicroPython projects with VSCode If you want a command line
interface to setup a new project and configure the settings as described above for you, then take a look at : [micropy-cli]

pip install micropy-cli
micropy init

Braden has essentially created a front-end for using micropython-stubber, and the configuration of a project folder for
pymakr.

micropy-cli maintains its own repository of stubs.

5

Micropython-Stubber, Release 1.3.8

6 Chapter 3. Using stubs

CHAPTER

FOUR

VSCODE AND PYLINT CONFIGURATION

The current configuration section describes how to use [Pylance].

To deliver an improved user experience, we’ve created Pylance as a brand-new language server based
on Microsoft’s Pyright static type checking tool. Pylance leverages type stubs (.pyi files) and lazy type
inferencing to provide a highly-performant development experience. Pylance supercharges your Python
IntelliSense experience with rich type information, helping you write better code, faster. The Pylance
extension is also shipped with a collection of type stubs for popular modules to provide fast and accurate
auto-completions and type checking.

Some sections may still refer to the use of [Microsoft Python Language Server][mpls], which has been deprecated.

4.1 Recommended order of the stubs in your config:

1. The src/libs folder(s)

2. The CPython common modules

3. The frozen modules offer more information that can be used in code completion, and therefore should be loaded
before the firmware stubs.

4. The firmware stubs generated on or for your board

Announcing Pylance: Fast, feature-rich language support for Python in Visual Studio Code | Python (microsoft.com)

4.2 Relevant VSCode settings

Setting De-
fault

Description ref

python.autoComplete.extraPaths[] Specifies locations of additional packages for which to load
autocomplete data.

Autocomplete
Settings

typeshedPaths [] Specifies paths to local typeshed repository clone(s) for the
Python language server.

Git

python.linting. Linting Settings

enabled true Specifies whether to enable linting in general.

pylintEnabled true Specifies whether to enable Pylint.

7

https://github.com/microsoft/pyright
https://www.python.org/dev/peps/pep-0561/
https://devblogs.microsoft.com/python/announcing-pylance-fast-feature-rich-language-support-for-python-in-visual-studio-code/
https://code.visualstudio.com/docs/python/settings-reference#_autocomplete-settings
https://code.visualstudio.com/docs/python/settings-reference#_autocomplete-settings
https://github.com/DonJayamanne/pythonVSCode/commit/7a90e863c1742b7c7d8a6612596bdc0a34a595d1
https://code.visualstudio.com/docs/python/settings-reference#_linting-settings

Micropython-Stubber, Release 1.3.8

4.2.1 Pylance - pyright

[Pylance](Pylance - Visual Studio Marketplace) is replacing MPLS and provides the same and more functionality.

Setting De-
fault

Description

python.analysis.stubPath./typ-
ings

Used to allow a user to specify a path to a directory that contains custom type stubs.
Each package’s type stub file(s) are expected to be in its own subdirectory.

python.analysis.autoSearchPathtrue Used to automatically add search paths based on some predefined names (like src).
python.analysis.extraPaths[] Used to specify extra search paths for import resolution. This replaces the old python.

autoComplete.extraPaths setting.

4.2.2 Sample configuration for Pylance

To update a project configuration from MPLS to Pylance is simple :

Open your VSCode settings file : .vscode/settings.json

• change the language server to Pylance "python.languageServer": "Pylance",

• remove the section: python.autoComplete.typeshedPaths

• remove the section : python.analysis.typeshedPaths

• optionally add : "python.analysis.autoSearchPath": true,

The result should be something like this :

{
"python.languageServer": "Pylance",
"python.analysis.autoSearchPath": true,
"python.autoComplete.extraPaths": [

"src/lib",
"all-stubs/cpython_patch",
"all-stubs/mpy_1_13-nightly_frozen/esp32/GENERIC",
"all-stubs/esp32_1_13_0-103",

]
"python.linting.enabled": true,
"python.linting.pylintEnabled": true,

}

If you notice problems :

• The paths are case sensitive (which may not be apparent for your platform)

• To allow the config to be used cross platform you can use forward slashes /, note that this is also accepted on
Windows

• If you prefer to use a backslash : in JSON notation the \ (backslash) MUST be escaped as \\ (double backslash)

• Remember to put the ‘Frozen’ module paths before the generated module paths.

References :

Pylance - Visual Studio Marketplace

microsoft/pyright: Static type checker for Python (github.com)

possible testing / diag :

8 Chapter 4. VSCode and Pylint configuration

https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance
https://github.com/microsoft/pyright#static-type-checker-for-python

Micropython-Stubber, Release 1.3.8

pyright/command-line.md at master · microsoft/pyright (github.com)

4.3 pylint

Pylint needs 2 settings :

1. Specify init-hook to inform pylint where the stubs are stored. note that the src folder is already automagically
included, so you do not need to add that.

2. disable some pesky warnings that make no sense for MicroPython, and that are caused by the stubs that have
only limited information

File: .pylintrc

[MASTER]
Loaded Stubs: esp32-micropython-1.11.0
init-hook='import sys;sys.path[1:1] = ["src/lib", "all-stubs/cpython-core", "all-stubs/
→˓mpy_1_12/frozen/esp32/GENERIC", "all-stubs/esp32_1_13_0-103",]'

disable = missing-docstring, line-too-long, trailing-newlines, broad-except, logging-
→˓format-interpolation, invalid-name,

no-method-argument, assignment-from-no-return, too-many-function-args,␣
→˓unexpected-keyword-arg

the 2nd line deals with the limited information in the generated stubs.

4.4 Microsoft Python Language Server settings - Deprecated

MPLS is being replaced by Pylance , and the below configuration is for reference only .

The language server settings apply when python.jediEnabled is false.

Set-
ting

Default Description ref

python.jediEnabledDefault true,
must be set to
FALSE

Indicates whether to use Jedi as the IntelliSense engine (true) or the Microsoft
Python Language Server (false). Note that the language server requires a
platform that supports .NET Core 2.1 or newer.

python.analysis. code
analysis
settings)

type-
shed-
Paths

[] Paths to look for typeshed modules on GitHub.

Our long-term plan is to transition our Microsoft Python Language Server users over to Pylance and eventually dep-
recate and remove the old language server as a supported option

4.3. pylint 9

https://github.com/microsoft/pyright/blob/master/docs/command-line.md
https://code.visualstudio.com/docs/python/settings-reference#_code-analysis-settings
https://code.visualstudio.com/docs/python/settings-reference#_code-analysis-settings
https://code.visualstudio.com/docs/python/settings-reference#_code-analysis-settings

Micropython-Stubber, Release 1.3.8

10 Chapter 4. VSCode and Pylint configuration

CHAPTER

FIVE

CREATE FIRMWARE STUBS

It is possible to create MicroPython stubs using the createstubs.py MicroPython script.

the script goes though the following stages

1. it determines the firmware family, the version and the port of the device, and based on that information it creates
a firmware identifier (fwid) in the format : {family}-{port}-{version} the fwid is used to name the folder that
stores the subs for that device.

• micropython-pyboard-1_10

• micropython-esp32-1_12

• loboris-esp32_LoBo-3_2_4

2. it cleans the stub folder

3. it generates stubs, using a predetermined list of module names. for each found module or submodule a stub file
is written to the device and progress is output to the console/repl.

4. a module manifest (modules.json) is created that contains the pertinent information determined from the board,
the version of createstubs.py and a list of the successful generated stubs

Module duplication

Due to the module naming convention in micropython some modules will be duplicated , ie uos and os will both be
included

5.1 Running the script

The createstubs.py script can either be run as a script or imported as a module depending on your preferences.

Running as a script is used on the linux or win32 platforms in order to pass a –path parameter to the script.

The steps are :

1. connect to your board

2. upload the script to your board [optional]

3. run/import the createstubs.py script

4. download the generated stubs to a folder on your PC

5. run the post-processor [optional, but recommended]

![createstubs-flow][]

Note: There is a memory allocation bug in MicroPython 1.30 that prevents createstubs.py to work. this was fixed in
nightly build v1.13-103 and newer.

11

Micropython-Stubber, Release 1.3.8

If you try to create stubs on this defective version, the stubber will raise NotImplementedError(“MicroPython 1.13.0
cannot be stubbed”)

5.2 Generating Stubs for a specific Firmware

The stub files are generated on a MicroPython board by running the script createstubs.py, this will generate the
stubs on the board and store them, either on flash or on the SD card.

Normal and minified versions

The script is available in 2 versions :

1. The normal version, which includes logging, but also requires to logging module to be available.

2. A minified version, which requires less memory and only very basic logging. this is specially suited for low
memory devices such as the esp8622 Both versions have the exact same functionality.

If your firmware does not include the logging module, you will need to upload this to your board, or use the minified
version.

import createstubs

The generation will take a few minutes (2-5 minutes) depending on the speed of the board and the number of included
modules.

As the stubs are generated on the board, and as MicroPython is highly optimized to deal with the scarce resources,
this unfortunately does mean that the stubs lacks parameters details. So for these you must still use the documentation
provided for that firmware.

5.3 Downloading the files

After the sub files have been generated , you will need to download the generated stubs from the micropython board and
most likely you will want to copy and save them on a folder on your computer. if you work with multiple firmwares,
ports or version it is simple to keep the stub files in a common folder as the firmware id is used to generate unique
names

• ./stubs

– /micropython-pyboard-1_10

– /micropython-esp32-1_12

– /micropython-linux-1_11

– /loboris-esp32_LoBo-3_1_20

– /loboris-esp32_LoBo-3_2_24

12 Chapter 5. Create Firmware Stubs

https://github.com/Josverl/micropython-stubber/blob/master/board/createstubs.py
https://github.com/Josverl/micropython-stubber/blob/master/minified/createstubs.py

Micropython-Stubber, Release 1.3.8

5.4 Custom firmware

The script tries to determine a firmware ID and version from the information provided in sys.implementation ,
sys.uname() and the existence of specific modules..

This firmware ID is used in the stubs , and in the folder name to store the subs.

If you need, or prefer, to specify a firmware ID you can do so by setting the firmware_id variable before importing
createstubs For this you will need to edit the createstubs.py file.

The recommendation is to keep the firmware id short, and add a version as in the below example.

almost at the end of the file
def main():

stubber = Stubber(firmware_id='HoverBot v1.2.1')
Add specific additional modules to be stubbed
stubber.add_modules(['hover','rudder'])

after this , upload the file and import it to generate the stubs using your custom firmware id.

5.5 The Unstubbables

There are a limited number of modules that cannot be stubbed by createstubs.py for a number of different reasons. Some
simply raise errors , others my reboot the MCU, or require a specific configuration or state before they are loaded.

a few of the frozen modules are just included as a sample rather \t would not be very useful to generate stubs for these

the problematic category throw errors or lock up the stubbing process altogether:

self.problematic=["upysh","webrepl_setup","http_client","http_client_ssl","http_server",
→˓"http_server_ssl"]

the excluded category provides no relevant stub information

self.excluded=["webrepl","_webrepl","port_diag","example_sub_led.py","example_pub_
→˓button.py"]

createstubs.py will not process a module in either category.

Note that some of these modules are in fact included in the frozen modules that are gathered for those ports or boards

5.4. Custom firmware 13

Micropython-Stubber, Release 1.3.8

14 Chapter 5. Create Firmware Stubs

CHAPTER

SIX

CPYTHON AND FROZEN MODULES

6.1 Frozen Modules

It is common for Firmwares to include a few (or many) python modules as ‘frozen’ modules. ‘Freezing’ modules is a
way to pre-process .py modules so they’re ‘baked-in’ to MicroPython’ s firmware and use less memory. Once the code
is frozen it can be quickly loaded and interpreted by MicroPython without as much memory and processing time.

Most OSS firmwares store these frozen modules as part of their repository, which allows us to:

1. Download the *.py from the (github) repo using git clone or a direct download

2. Extract and store the ‘unfrozen’ modules (ie the *.py files) in a _Frozen folder. if there are different port / boards
or releases defined , there may be multiple folders such as:

• stubs/micropython_1_12_frozen

– /esp32

∗ /GENERIC

∗ /RELEASE

∗ /TINYPICO

– /stm32

∗ /GENERIC

∗ /PYBD_SF2

3. generate typeshed stubs of these files. (the .pyi files will be stored alongside the .py files)

4. Include/use them in the configuration

ref: https://learn.adafruit.com/micropython-basics-loading-modules/frozen-modules

6.2 Collect Frozen Stubs (micropython)

This is run daily though the github action workflow : get-all-frozen in the micropython-stubs repo.

If you want to run this manually

• Check out repos side-by-side:

– micropython-stubs

– micropython-stubber

– micropython

15

Micropython-Stubber, Release 1.3.8

– micropython-lib

• link repos using all_stubs symlink

• checkout tag / version in the micropython folder(for most accurate results should checkout micropython-lib for
the same date)

• run src/get-frozen.py

• run src/update-stubs.py

• create a PR for changes to the stubs repo

6.3 Postprocessing

You can run postprocessing for all stubs by running either of the two scripts. There is an optional parameter to specify
the location of the stub folder. The default path is ./all_stubs

Powershell:

./scripts/updates_stubs.ps1 [-path ./mystubs]

or python

python ./src/update_stubs.py [./mystubs]

This will generate or update the .pyi stubs for all new (and existing) stubs in the ./all_stubs or specified folder.

From version ‘1.3.8’ the .pyi stubs are generated using stubgen, before that the make_stub_files.py script was
used.

Stubgen is run on each ‘collected stub folder’ (that contains a modules.json manifest) using the options :
--ignore-errors --include-private and the resulting .pyi files are stored in the same folder (foo.py and
foo.pyi are stored next to each other).

In some cases stubgen detects duplicate modules in a ‘collected stub folder’, and subsequently does not generate any
stubs for any .py module or script. then Plan B is to run stubgen for each separate *.py file in that folder. THis is
significantly slower and according to the stubgen documentation the resulting stubs may of lesser quality, but that is
better than no stubs at all.

Note: In several cases stubgen creates folders in inappropriate locations (reason undetermined), which would cause
issues when re-running stubgen at a later time. to compensate for this behaviour the known-incorrect .pyi files are
removed before and after stubgen is run see: cleanup(modules_folder) in utils.py

16 Chapter 6. CPython and Frozen modules

https://github.com/Josverl/micropython-stubber/blob/master/src/utils.py#L40-L66

CHAPTER

SEVEN

REPO STRUCTURE

• This and sister repos

• Structure of this repo

• Naming Convention and Stub folder structure

• 2 python versions

7.1 This and sister repos

repo Why Where example
micropython-
stubber

needed to make stubs in your source folder develop/micropython-stubber

micropython to collect frozen
modules

submodule of micropython-
stubber

develop/micropython-
stubber/micropython

micropython-lib to collect frozen
modules

submodule of micropython-
stubber

develop/micropython-
stubber/micropython-lib

micropython-
stubs

stores collected stubs next to the stubber develop/micropython-stubs

Note:

• recommended is to create a symlink from develop/micropython-stubber\all-stubs to develop/
micropython-stubs

Note:

• For Git submodules please refer to https://git-scm.com/book/en/v2/Git-Tools-Submodules

17

Micropython-Stubber, Release 1.3.8

7.2 Structure of this repo

The file structure is based on my personal windows environment, but you should be able to adapt that without much
hardship to you own preference and OS.

What Details Where
stub root symlink to connect the 2 sister-repos all_stubs
firmware stubber MicroPython board/createstubs.py
minified firmware stubber MicroPython minified/createstubs.py
PC based scripts CPython src/*
PC based scripts CPython process.py
pytest tests test/*

7.3 Naming Convention and Stub folder structure

What Why Where
stub root connect the 2 repos all_stubs
cpython stubs for micropy-
thon core

adapt for differences between CPython and
MicroPython

stubs/cpython-core

generated stub files needed to use stubs stubs/{firmware}-{port}-
{version}-frozen

Frozen stub files better code intellisense stubs/{firmware}-{version}-
frozen

Note: I found that, for me, using submodules caused more problems than it solved. So instead I link the two main
repo’s using a symlink.

Note: I in the repo tests I have used the folders TESTREPO-micropython and TESTREPO-micropython-lib to avoid
conflicts with any development that you might be doing on similar micropython repos at the potential cost of a little
disk space.

cd /develop

git clone https://github.com/josverl/micropython-stubber.git
git clone https://github.com/josverl/micropython-stubs.git
git clone https://github.com/micropython/micropython.git
git clone https://github.com/micropython/micropython.git

18 Chapter 7. Repo structure

Micropython-Stubber, Release 1.3.8

7.4 Create a symbolic link

To create the symbolic link to the ../micropython-stubs/stubs folder the instructions differ slightly for each OS/
The below examples assume that the micropython-stubs repo is cloned ‘next-to’ your project folder. please adjust as
needed.

7.4.1 Windows 10

Requires Developer enabled or elevated powershell prompt.

target must be an absolute path, resolve path is used to resolve the relative path to␣
→˓absolute
New-Item -ItemType SymbolicLink -Path "all-stubs" -Target (Resolve-Path -Path ../
→˓micropython-stubs/stubs)

or use mklink in an (elevated) command prompt

rem target must be an absolute path
mklink /d all-stubs c:\develop\micropython-stubs\stubs

7.4.2 Linux/Unix/Mac OS

target must be an absolute path
ln -s /path/to/micropython-stubs/stubs all-stubs

7.4. Create a symbolic link 19

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mklink

Micropython-Stubber, Release 1.3.8

20 Chapter 7. Repo structure

CHAPTER

EIGHT

STUBS

Initially I also stored all the generated subs in the same repo. That turned out to be a bit of a hassle and since then I
have moved all the stubs to the micropython-stubs repo

Below are the most relevant stub sources referenced in this project.

8.1 Firmware and libraries

8.1.1 MicroPython firmware and frozen modules [MIT]

https://github.com/micropython/micropython

https://github.com/micropython/micropython-lib

8.1.2 Pycopy firmware and frozen modules [MIT]

https://github.com/pfalcon/pycopy

https://github.com/pfalcon/pycopy-lib

8.1.3 LoBoris ESP32 firmware and frozen modules [MIT, Apache 2]

https://github.com/loboris/MicroPython_ESP32_psRAM_LoBo

8.2 Included custom stubs

Github repo Contributions License
pfalcon/micropython-lib CPython backports MIT
dastultz/micropython-pyb a pyb.py file for use with IDEs in developing a project for the Pyboard Apache 2

21

https://github.com/Josverl/micropython-stubs/blob/master/firmwares.md
https://github.com/Josverl/micropython-stubs#micropython-stubs

Micropython-Stubber, Release 1.3.8

8.2.1 Stub source: MicroPython-lib > CPython backports [MIT, Python]

While micropython-lib focuses on MicroPython, sometimes it may be beneficial to run MicroPython code us-
ing CPython, e.g. to use code coverage, debugging, etc. tools available for it. To facilitate such usage,
micropython-lib also provides re-implementations (“backports”) of MicroPython modules which run on CPython.
https://github.com/pfalcon/micropython-lib#cpython-backports

8.2.2 micropython_pyb [Apache 2]

This project provides a pyb.py file for use with IDEs in developing a project for the Pyboard.
https://github.com/dastultz/micropython-pyb

22 Chapter 8. Stubs

CHAPTER

NINE

REFERENCES

9.1 Inspiration

9.1.1 Thonny - MicroPython _cmd_dump_api_info [MIT License]

The createstubs.py script to create the stubs is based on the work of Aivar Annamaa and the Thonny crew. It is
somewhere deep in the code and is apparently only used during the development cycle but it showed a way how to
extract/generate a representation of the MicroPython modules written in C

While the concepts remain, the code has been rewritten to run on a micropython board, rather than on a connected PC
running CPython. Please refer to : Thonny code sample

9.1.2 MyPy Stubgen

MyPy stubgen is used to generate stubs for the frozen modules and for the *.py stubs that were generated on a board.

9.1.3 make_stub_files [Public Domain]

https://github.com/edreamleo/make-stub-files

This script make_stub_files.py makes a stub (.pyi) file in the output directory for each source file listed on the
command line (wildcard file names are supported).

The script does no type inference. Instead, the user supplies patterns in a configuration file. The script matches these
patterns to: The names of arguments in functions and methods and The text of return expressions. Return expressions
are the actual text of whatever follows the “return” keyword. The script removes all comments in return expressions
and converts all strings to “str”. This preprocessing greatly simplifies pattern matching.

Note: It was found that the stubs / prototypes of some functions with complex arguments were not handled correctly,
resulting in incorrectly formatted stubs (.pyi)Therefore this functionality has been replaced by MyPy stubgen

23

https://github.com/thonny/thonny/blob/786f63ff4460abe84f28c14dad2f9e78fe42cc49/thonny/plugins/micropython/__init__.py#L608
https://github.com/python/mypy/blob/master/docs/source/stubgen.rst#automatic-stub-generation-stubgen

Micropython-Stubber, Release 1.3.8

9.2 Documentation on Type hints

• Type hints cheat sheet

• PEP 3107 – Function Annotations

• PEP 484 – Type Hints

• Optional Static Typing for Python

• TypeShed

• SO question

24 Chapter 9. References

https://github.com/python/mypy/blob/master/docs/source/cheat_sheet_py3.rst#type-hints-cheat-sheet-python-3
https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-0484/
https://github.com/python/mypy#mypy-optional-static-typing-for-python
https://github.com/python/typeshed/
https://stackoverflow.com/questions/35602541/create-pyi-files-automatically

CHAPTER

TEN

CHANGELOG

10.1 documentation

• Add Sphinxs documentaion

– changelog

– automatic API documentation for

∗ createsubs.py (board)

∗ scripts to run on PC / Github actions

• Publish documentation to readthedocs

10.2 createstubs - version 1.4

• createstubs.py

– improvements to handle nested classes to be able to create stubs for lvgl. this should also benefit other more
complex modules.

• added stub_lvgl.py helper script

10.3 createstubs.py - version 1.3.16

• createstubs.py

– fix for micropython v1.16

– skip _test modules in module list

– black formatting

– addition of init methods (based on runtime / static)

– class method decorator

– additional type information for constants using comment style typing

– detect if running on MicroPython or CPython

– improve report formatting to list each module on a separate line to allow for better comparison

• workflows

25

Micropython-Stubber, Release 1.3.8

– move to ubuntu 20.04

∗ move to test/tools/ubuntu_20_04/micropython_v1.xx

– run more tests in GHA

• postprocessing

– minification adjusted to work with black

– use mypy.stubgen

– run per folder

∗ verify 1:1 relation .py-.pyi

∗ run mypy.stubgen to generate missing .pyi files

– publish test results to GH

• develop / repo setup

– updated dev requirements (requirements-dev.txt)

– enable developing on GitHub codespaces

– switched to using submodules to remove external dependencies how to clone : git submodule init git
submodule update

– added black configuration file to avoid running black on minified version

– switched to using .venv on all platforms

– added and improved tests

∗ test coverage increased to 82%

– move to test/tools/ubuntu_20_04/micropython_v1.xx

∗ for test (git workflows)

∗ for tasks

– make use of CPYTHON stubs to alle makestubs to run well on CPYTHON

∗ allows pytest, and debugging of tests

– add tasks to :

∗ run createstubs in linux version

26 Chapter 10. Changelog

https://github.com/codespaces

CHAPTER

ELEVEN

TO-DO (PROVISIONAL)

11.1 working on it

11.1.1 read RST files

• add prototypes from RST ref: https://github.com/python/mypy/blob/master/mypy/stubdoc.py

11.1.2 documentation

• how to run post-processing

• how the debug setup works

11.1.3 stubber :

• document - that gc and sys modules are somehow ignored by pylint and will keep throwing errors

• add mpy information to manifest

• use ‘nightly’ naming convention in createstubs.py

• change firmware naming

11.1.4 frozen stubs

• add simple readme.md ?

11.1.5 Stub augmentation/ merging typeinformation from copied / generated type-
rich info

https://libcst.readthedocs.io/en/latest/tutorial.html

• add prototypes from Source ? check if https://github.com/python/mypy/blob/master/mypy/stubgenc.py might be
useful

• test to auto-merge common prototypes by stubber ie. add common return types to make_stub_files.cfg

• resolve import time issues

27

Micropython-Stubber, Release 1.3.8

11.1.6 SYS en GC

#pylint: disable=no-member ## workaround for sys and gc

Module ‘sys’ has no ‘print_exception’ member Module ‘gc’ has no ‘mem_free’ member Module ‘gc’ has no ‘thresh-
old’ member Module ‘gc’ has no ‘mem_free’ member Module ‘gc’ has no ‘mem_alloc’ member { “resource”:
“/c:/develop/MyPython/ESP32-P1Meter/src/main.py”, “owner”: “python”, “code”: “no-member”, “severity”: 8,
“message”: “Module ‘gc’ has no ‘mem_free’ member”, “source”: “pylint”, “startLineNumber”: 33, “startColumn”:
22, “endLineNumber”: 33, “endColumn”: 22 }

11.1.7 Webrepl

Unable to import ‘webrepl’ can include in common modules C:\develop\MyPython\micropython\extmod\webrepl\webrepl.py

28 Chapter 11. TO-DO (provisional)

CHAPTER

TWELVE

DEVELOPING

12.1 Windows 10

I use Windows 10 and use WSL2 to run the linux based parts. if you develop on other platform, it is quite likely that you
may need to change some details. if that is needed , please update/add to the documentation and send a documentation
PR.

• clone

• create python virtual environment (optional)

• install requirements-dev

• setup sister repos

• run test to verify setup

12.2 Github codespaces

Is is also possible to start a pre-configure development environment in GitHub Codespaces this is probably the fastest
and quickest way to start developing.

Note that Codespaces is currently in an extended beta.

29

https://github.com/features/codespaces

Micropython-Stubber, Release 1.3.8

12.3 Wrestling with two pythons

This project combines CPython and MicroPython in one project. As a result you may/will need to switch the configu-
ration of pylint and VSCode to match the section of code that you are working on. This is caused by the fact that pylint
does not support per-folder configuration

to help switching there are 2 different .pylintrc files stored in the root of the project to simplify switching.

Similar changes will need to be done to the .vscode/settings.json

If / when we can get pylance to work with the micropython stubs , this may become simpler as Pylance natively supports
multi-root workspaces, meaning that you can open multiple folders in the same Visual Studio Code session and have
Pylance functionality in each folder.

12.4 Minification

if you make changes to the createstubs.py script , you should also update the minified version by running python
process.py minify at some point.

if you forget to do this there is a github action that should do this for you and create a PR for your branch.

12.5 Testing

MicroPython-Stubber has a number of tests written in Pytest

see below overview

folder what how used where
board createstubs.pynormal

& minified
runs createstubs.py on micropython-linux ports WSL2

and github
actions

check-
out_repo

simple_git mod-
uleretrieval of frozen
modules

does not use mocking but actually retrieves different firmware
versions locally using git or dowNloads modules for online

local win-
dows

com-
mon

all other tests common local +
github
action

Note: Also see test documentation

Platform detection to support pytest In order to allow both simple usability om MicroPython and testability on Full
Python, createstubs does a runtime test to determine the actual platform it is running on while importing the module This
is similar to using the if __name__ == "__main__": preamble If running on MicroPython, then it starts stubbing

if isMicroPython():
main()

Testing on micropython linux port(s) in order to be able to test createstubs.py, it has been updated to run on
linux, and accept a –path parameter to indicate the path where the stubs should be stored.

30 Chapter 12. Developing

https://code.visualstudio.com/docs/editor/multi-root-workspaces

Micropython-Stubber, Release 1.3.8

12.6 github actions

12.6.1 pytests.yml

This workflow will :

• test the workstation scripts

• test the createstubs.py script on multiple micropython linux versions

• test the minified createstubs.py script on multiple micropython linux versions

12.6.2 run minify-pr.yml

This workflow will :

• create a minified version of createstubs.py

• run a quick test on that

• and submit a PR to the branch -minify

12.6. github actions 31

Micropython-Stubber, Release 1.3.8

32 Chapter 12. Developing

CHAPTER

THIRTEEN

TESTING

A significant number of tests have been created in pytest.

• The tests are located in the tests folder.

• The tests/data folder contains folders with subs that are used to verify the correct working of the minification
modules

• debugging the tests only works if –no-cov is specified for pytest

13.1 testing & debugging createstubs.py

• the tests\mocks folder contains mock-modules that allow the micropython code to be run in CPython. This is
used by the unit tests that verify createstubs.py and it minified version.

• in order to load / debug the test the python path needs to include the cpython_core modules (Q&D)

• mocking cpython_core/os is missing the implementation attribute so that has been added (Q&D)

13.2 platform detection

In order to allow both simple usability om MicroPython and testability on full Python, createstubs does a runtime test
to determine the actual platform it is running on while importing the module

This is similar to using the if __name__ == "__main__": preamble

if isMicroPython():
main()

This allows pytest test running on full Python to import createstubs.py and run tests against individual methods,
while allowing the script to run directly on import on a MicroPython board.

Note: Some test are platform dependent and have been marked to only run on linux or windows

33

Micropython-Stubber, Release 1.3.8

13.3 Code Coverage

Code coverage is measured and reported in the coverage/index.html report. This report is not checked in to the
repo, and therefore is only

34 Chapter 13. Testing

CHAPTER

FOURTEEN

API REFERENCE

This page contains auto-generated API reference documentation1.

14.1 stub_lvgl

Helper module to create stubs for the lvgl modules. Note that the stubs can be very large, and it may be best to directly
store them on an SD card if your device supports this.

14.1.1 Module Contents

Functions

main() Create stubs for the lvgl modules using the lvlg version
number.

stub_lvgl.main()
Create stubs for the lvgl modules using the lvlg version number.

14.2 main

14.2.1 Module Contents

Functions

countdown()

main.countdown()

1 Created with sphinx-autoapi

35

https://github.com/readthedocs/sphinx-autoapi

Micropython-Stubber, Release 1.3.8

14.3 createstubs

Create stubs for (all) modules on a MicroPython board Copyright (c) 2019-2021 Jos Verlinde

14.3.1 Module Contents

Classes

Stubber Generate stubs for modules in firmware

Functions

resetWDT()

show_help()

read_path () → str get --path from cmdline. [unix/win]
isMicroPython() → bool runtime test to determine full or micropython
main()

Attributes

stubber_version

ENOENT

MAX_CLASS_LEVEL

createstubs.stubber_version = 1.4.1

createstubs.ENOENT = 2

createstubs.MAX_CLASS_LEVEL = 2

createstubs.resetWDT()

class createstubs.Stubber(path: str = None, firmware_id: str = None)
Generate stubs for modules in firmware

Parameters

• path (str) –

• firmware_id (str) –

static _info()
collect base information on this runtime

get_obj_attributes(self, obj: object)
extract information of the objects members and attributes

36 Chapter 14. API Reference

Micropython-Stubber, Release 1.3.8

Parameters obj (object) –

add_modules(self, modules: list)
Add additional modules to be exported

Parameters modules (list) –

create_all_stubs(self)
Create stubs for all configured modules

create_module_stub(self, module_name: str, file_name: str = None)
Create a Stub of a single python module

Parameters

• module_name (str) –

• file_name (str) –

write_object_stub(self, fp, object_expr: object, obj_name: str, indent: str, in_class: int = 0)
Write a module/object stub to an open file. Can be called recursive.

Parameters

• object_expr (object) –

• obj_name (str) –

• indent (str) –

• in_class (int) –

property flat_fwid(self)
Turn _fwid from ‘v1.2.3’ into ‘1_2_3’ to be used in filename

clean(self, path: str = None)
Remove all files from the stub folder

Parameters path (str) –

report(self, filename: str = 'modules.json')
create json with list of exported modules

Parameters filename (str) –

ensure_folder(self, path: str)
Create nested folders if needed

Parameters path (str) –

static get_root()→ str
Determine the root folder of the device

Return type str

createstubs.show_help()

createstubs.read_path()→ str
get –path from cmdline. [unix/win]

Return type str

createstubs.isMicroPython()→ bool
runtime test to determine full or micropython

Return type bool

createstubs.main()

14.3. createstubs 37

Micropython-Stubber, Release 1.3.8

14.4 get_mpy

Collect modules and python stubs from MicroPython source projects (v1.12 +) and stores them in the all_stubs folder
The all_stubs folder should be mapped/symlinked to the micropython_stubs/stubs repo/folder

14.4.1 Module Contents

Functions

freeze_as_mpy(path, script=None, opt=0)

freeze_as_str(path)

freeze(path, script=None, opt=0) Freeze the input, automatically determining its type. A
.py script

freezedry(path, script) copy the to-be-frozen module to the destination folder to
be stubbed

include(manifest) Include another manifest.
convert_path (path) Perform variable substitution in path
get_frozen(stub_path: str, version: str, mpy_path: str
= None, lib_path: str = None)

get and parse the to-be-frozen .py modules for micropy-
thon to extract the static type information

get_frozen_folders(stub_path: str, mpy_path: str,
lib_path: str, version: str)

get and parse the to-be-frozen .py modules for micropy-
thon to extract the static type information

get_target_names(path: str) → tuple get path to port and board names from a path
get_frozen_manifest(manifests, stub_path: str,
mpy_path: str, lib_path: str, version: str)

get and parse the to-be-frozen .py modules for micropy-
thon to extract the static type information

Attributes

log

FAMILY

path_vars

stub_dir

mpy_path

get_mpy.log

get_mpy.FAMILY = micropython

get_mpy.path_vars

get_mpy.stub_dir

exception get_mpy.FreezeError
Bases: Exception

38 Chapter 14. API Reference

Micropython-Stubber, Release 1.3.8

Common base class for all non-exit exceptions.

get_mpy.freeze_as_mpy(path, script=None, opt=0)

get_mpy.freeze_as_str(path)

get_mpy.freeze(path, script=None, opt=0)
Freeze the input, automatically determining its type. A .py script will be compiled to a .mpy first then frozen,
and a .mpy file will be frozen directly.

path must be a directory, which is the base directory to search for files from. When importing the resulting frozen
modules, the name of the module will start after path, ie path is excluded from the module name.

If path is relative, it is resolved to the current manifest.py. Use $(MPY_DIR), $(MPY_LIB_DIR), $(PORT_DIR),
$(BOARD_DIR) if you need to access specific paths.

If script is None all files in path will be frozen.

If script is an iterable then freeze() is called on all items of the iterable (with the same path and opt passed
through).

If script is a string then it specifies the filename to freeze, and can include extra directories before the file. The
file will be searched for in path.

opt is the optimisation level to pass to mpy-cross when compiling .py to .mpy. (ignored in this implementation)

get_mpy.freezedry(path, script)
copy the to-be-frozen module to the destination folder to be stubbed

get_mpy.include(manifest)
Include another manifest.

The manifest argument can be a string (filename) or an iterable of strings.

Relative paths are resolved with respect to the current manifest file.

get_mpy.convert_path(path)
Perform variable substitution in path

get_mpy.get_frozen(stub_path: str, version: str, mpy_path: str = None, lib_path: str = None)

get and parse the to-be-frozen .py modules for micropython to extract the static type information

• requires that the MicroPython and Micropython-lib repos are checked out and available on a local path

• repos should be cloned side-by-side as some of the manifests refer to micropython-lib scripts using a
relative path

Parameters

• stub_path (str) –

• version (str) –

• mpy_path (str) –

• lib_path (str) –

get_mpy.get_frozen_folders(stub_path: str, mpy_path: str, lib_path: str, version: str)
get and parse the to-be-frozen .py modules for micropython to extract the static type information locates the to-
be-frozen files in modules folders - ‘ports/<port>/modules/*.py’ - ‘ports/<port>/boards/<board>/modules/*.py’

Parameters

• stub_path (str) –

14.4. get_mpy 39

Micropython-Stubber, Release 1.3.8

• mpy_path (str) –

• lib_path (str) –

• version (str) –

get_mpy.get_target_names(path: str)→ tuple
get path to port and board names from a path

Parameters path (str) –

Return type tuple

get_mpy.get_frozen_manifest(manifests, stub_path: str, mpy_path: str, lib_path: str, version: str)
get and parse the to-be-frozen .py modules for micropython to extract the static type information locates the to-
be-frozen files through the manifest.py introduced in MicroPython 1.12 - manifest.py is used for board specific
and daily builds - manifest_release.py is used for the release builds

Parameters

• stub_path (str) –

• mpy_path (str) –

• lib_path (str) –

• version (str) –

get_mpy.mpy_path = ./micropython

14.5 get_lobo

Collect modules and python stubs from the Loboris MicroPython source project and stores them in the all_stubs folder
The all_stubs folder should be mapped/symlinked to the micropython_stubs/stubs repo/folder

14.5.1 Module Contents

Functions

get_frozen(stub_path=None, *, repo=None, ver-
sion='3.2.24')

Loboris frozen modules

Attributes

FAMILY

PORT

log

get_lobo.FAMILY = loboris

get_lobo.PORT = esp32_lobo

40 Chapter 14. API Reference

Micropython-Stubber, Release 1.3.8

get_lobo.log

get_lobo.get_frozen(stub_path=None, *, repo=None, version='3.2.24')
Loboris frozen modules

14.6 update_stubs

Collect modules and python stubs from other projects and stores them in the all_stubs folder The all_stubs folder should
be mapped/symlinked to the micropython_stubs/stubs repo/folder

14.6.1 Module Contents

update_stubs.log

update_stubs.stub_path

14.7 utils

14.7.1 Module Contents

Functions

clean_version(version: str, build: bool = False) omit the commit hash from the git tag
stubfolder(path: str) → str return path in the stub folder
flat_version(version: str) Turn version from 'v1.2.3' into '1_2_3' to be used in file-

name
cleanup(modules_folder: pathlib.Path) Q&D cleanup
generate_pyi_from_file(file: pathlib.Path) → bool Generate a .pyi stubfile from a single .py module using

mypy/stubgen
generate_pyi_files(modules_folder: pathlib.Path)
→ bool

generate typeshed files for all scripts in a folder using
mypy/stubgen

manifest(family=None, machine=None, port=None,
platform=None, sysname=None, nodename=None, ver-
sion=None, release=None, firmware=None) → dict

create a new empty manifest dict

make_manifest(folder: pathlib.Path, family: str, port:
str, version: str) → bool

Create a module.json manifest listing all files/stubs in
this folder and subfolders.

generate_all_stubs() just create typeshed stubs
read_exclusion_file(path: pathlib.Path = None) →
List[str]

Read a .exclusion file to determine which files should not
be automatically re-generated

should_ignore(file: str, exclusions: List[str]) → bool Check if a file matches a line in the exclusion list.

14.7. utils 41

Micropython-Stubber, Release 1.3.8

Attributes

log

STUB_FOLDER

utils.log

utils.STUB_FOLDER = ./all-stubs

utils.clean_version(version: str, build: bool = False)
omit the commit hash from the git tag

Parameters

• version (str) –

• build (bool) –

utils.stubfolder(path: str)→ str
return path in the stub folder

Parameters path (str) –

Return type str

utils.flat_version(version: str)
Turn version from ‘v1.2.3’ into ‘1_2_3’ to be used in filename

Parameters version (str) –

utils.cleanup(modules_folder: pathlib.Path)
Q&D cleanup

Parameters modules_folder (pathlib.Path) –

utils.generate_pyi_from_file(file: pathlib.Path)→ bool
Generate a .pyi stubfile from a single .py module using mypy/stubgen

Parameters file (pathlib.Path) –

Return type bool

utils.generate_pyi_files(modules_folder: pathlib.Path)→ bool
generate typeshed files for all scripts in a folder using mypy/stubgen

Parameters modules_folder (pathlib.Path) –

Return type bool

utils.manifest(family=None, machine=None, port=None, platform=None, sysname=None, nodename=None,
version=None, release=None, firmware=None)→ dict

create a new empty manifest dict

Return type dict

utils.make_manifest(folder: pathlib.Path, family: str, port: str, version: str)→ bool
Create a module.json manifest listing all files/stubs in this folder and subfolders.

Parameters

• folder (pathlib.Path) –

• family (str) –

42 Chapter 14. API Reference

Micropython-Stubber, Release 1.3.8

• port (str) –

• version (str) –

Return type bool

utils.generate_all_stubs()
just create typeshed stubs

utils.read_exclusion_file(path: pathlib.Path = None)→ List[str]
Read a .exclusion file to determine which files should not be automatically re-generated in .GitIgnore format

Parameters path (pathlib.Path) –

Return type List[str]

utils.should_ignore(file: str, exclusions: List[str])→ bool
Check if a file matches a line in the exclusion list.

Parameters

• file (str) –

• exclusions (List[str]) –

Return type bool

14.8 get_cpython

Download or update the micropyton compatibility modules from pycopy and stores them in the all_stubs folder The
all_stubs folder should be mapped/symlinked to the micropython_stubs/stubs repo/folder

14.8.1 Module Contents

Functions

get_core(requirements, stub_path=None) Download MicroPython compatibility modules

Attributes

log

family

get_cpython.log

get_cpython.family = common

get_cpython.get_core(requirements, stub_path=None)
Download MicroPython compatibility modules

14.8. get_cpython 43

Micropython-Stubber, Release 1.3.8

14.9 get_all_frozen

Collect modules and python stubs from other projects and stores them in the all_stubs folder The all_stubs folder should
be mapped/symlinked to the micropython_stubs/stubs repo/folder

1) get cpython core modules

2) get micropython frozen modules for the CURRENT checked out version

3) get Loboris frozen modules (no longer maintained)

4) Generate/update type hint files (pyi) for all stubs.

14.9.1 Module Contents

Functions

get_all(mpy_path=MPY_PATH) get all frozen modules for the current version of micropy-
thon

Attributes

log

STUB_FOLDER

MPY_PATH

get_all_frozen.log

get_all_frozen.STUB_FOLDER = ./all-stubs

get_all_frozen.MPY_PATH = ./micropython

get_all_frozen.get_all(mpy_path=MPY_PATH)
get all frozen modules for the current version of micropython

44 Chapter 14. API Reference

Micropython-Stubber, Release 1.3.8

14.10 basicgit

simple Git module, where needed via powershell

14.10.1 Module Contents

Functions

_run_git(cmd: str, repo: str = None, ex-
pect_stderr=False)

run a external (git) command in the repo's folder and deal
with some of the errors

get_tag(repo: str = None) → Union[str, None] get the most recent git version tag of a local repo"
checkout_tag(tag: str, repo: str = None) → bool get the most recent git version tag of a local repo"
fetch (repo: str) → bool fetches a repo
pull(repo: str, branch='master') → bool pull a repo origin into master

basicgit._run_git(cmd: str, repo: str = None, expect_stderr=False)
run a external (git) command in the repo’s folder and deal with some of the errors

Parameters

• cmd (str) –

• repo (str) –

basicgit.get_tag(repo: str = None)→ Union[str, None]
get the most recent git version tag of a local repo” repo should be in the form of : repo = “./micropython”

returns the tag or None

Parameters repo (str) –

Return type Union[str, None]

basicgit.checkout_tag(tag: str, repo: str = None)→ bool
get the most recent git version tag of a local repo” repo should be in the form of : repo = “../micropython/.git”

returns the tag or None

Parameters

• tag (str) –

• repo (str) –

Return type bool

basicgit.fetch(repo: str)→ bool
fetches a repo repo should be in the form of : repo = “../micropython/.git”

returns True on success

Parameters repo (str) –

Return type bool

basicgit.pull(repo: str, branch='master')→ bool
pull a repo origin into master repo should be in the form of : repo = “../micropython/.git”

returns True on success

Parameters repo (str) –

14.10. basicgit 45

Micropython-Stubber, Release 1.3.8

Return type bool

14.11 downloader

Download files from a public github repo

14.11.1 Module Contents

Functions

download_file(url: str, module: str, folder: str = './') dowload a file from a public github repo
download_files(repo, frozen_modules, savepath) dowload multiple files from a public github repo

downloader.download_file(url: str, module: str, folder: str = './')
dowload a file from a public github repo

Parameters

• url (str) –

• module (str) –

• folder (str) –

downloader.download_files(repo, frozen_modules, savepath)
dowload multiple files from a public github repo

14.12 add_class_init

14.12.1 Module Contents

Functions

add_init_methods(filename) → int Add (missing) __init__ methods to a class using a regex

Attributes

empty_classdef

re_classdef

repl_classdef

x

46 Chapter 14. API Reference

Micropython-Stubber, Release 1.3.8

add_class_init.empty_classdef = (?P<indent1>
?)class\s*(?P<class>\s*.+\s*):(?P<LF>\r?\n)(?P<indent2> +)''\r?\n

add_class_init.re_classdef

add_class_init.repl_classdef = \g<indent1>class \g<class>:\g<LF>\g<indent2>def
__init__(self):\g<LF>\g<indent2> ...

add_class_init.add_init_methods(filename)→ int
Add (missing) __init__ methods to a class using a regex this assumes the (incorrect) classdef format that has
been used by stubbers prior to version 1.4.0 and updates that to add the init.

Return type int

add_class_init.x

14.12. add_class_init 47

Micropython-Stubber, Release 1.3.8

48 Chapter 14. API Reference

CHAPTER

FIFTEEN

INDICES AND TABLES

• genindex

• modindex

• search

49

Micropython-Stubber, Release 1.3.8

50 Chapter 15. Indices and tables

PYTHON MODULE INDEX

a
add_class_init, 46

b
basicgit, 45

c
createstubs, 36

d
downloader, 46

g
get_all_frozen, 44
get_cpython, 43
get_lobo, 40
get_mpy, 38

m
main, 35

s
stub_lvgl, 35

u
update_stubs, 41
utils, 41

51

Micropython-Stubber, Release 1.3.8

52 Python Module Index

INDEX

Symbols
_info() (createstubs.Stubber static method), 36
_run_git() (in module basicgit), 45

A
add_class_init

module, 46
add_init_methods() (in module add_class_init), 47
add_modules() (createstubs.Stubber method), 37

B
basicgit

module, 45

C
checkout_tag() (in module basicgit), 45
clean() (createstubs.Stubber method), 37
clean_version() (in module utils), 42
cleanup() (in module utils), 42
convert_path() (in module get_mpy), 39
countdown() (in module main), 35
create_all_stubs() (createstubs.Stubber method), 37
create_module_stub() (createstubs.Stubber method),

37
createstubs

module, 36

D
download_file() (in module downloader), 46
download_files() (in module downloader), 46
downloader

module, 46

E
empty_classdef (in module add_class_init), 46
ENOENT (in module createstubs), 36
ensure_folder() (createstubs.Stubber method), 37

F
family (in module get_cpython), 43
FAMILY (in module get_lobo), 40

FAMILY (in module get_mpy), 38
fetch() (in module basicgit), 45
flat_fwid (createstubs.Stubber property), 37
flat_version() (in module utils), 42
freeze() (in module get_mpy), 39
freeze_as_mpy() (in module get_mpy), 39
freeze_as_str() (in module get_mpy), 39
freezedry() (in module get_mpy), 39
FreezeError, 38

G
generate_all_stubs() (in module utils), 43
generate_pyi_files() (in module utils), 42
generate_pyi_from_file() (in module utils), 42
get_all() (in module get_all_frozen), 44
get_all_frozen

module, 44
get_core() (in module get_cpython), 43
get_cpython

module, 43
get_frozen() (in module get_lobo), 41
get_frozen() (in module get_mpy), 39
get_frozen_folders() (in module get_mpy), 39
get_frozen_manifest() (in module get_mpy), 40
get_lobo

module, 40
get_mpy

module, 38
get_obj_attributes() (createstubs.Stubber method),

36
get_root() (createstubs.Stubber static method), 37
get_tag() (in module basicgit), 45
get_target_names() (in module get_mpy), 40

I
include() (in module get_mpy), 39
isMicroPython() (in module createstubs), 37

L
log (in module get_all_frozen), 44
log (in module get_cpython), 43
log (in module get_lobo), 40

53

Micropython-Stubber, Release 1.3.8

log (in module get_mpy), 38
log (in module update_stubs), 41
log (in module utils), 42

M
main

module, 35
main() (in module createstubs), 37
main() (in module stub_lvgl), 35
make_manifest() (in module utils), 42
manifest() (in module utils), 42
MAX_CLASS_LEVEL (in module createstubs), 36
module

add_class_init, 46
basicgit, 45
createstubs, 36
downloader, 46
get_all_frozen, 44
get_cpython, 43
get_lobo, 40
get_mpy, 38
main, 35
stub_lvgl, 35
update_stubs, 41
utils, 41

MPY_PATH (in module get_all_frozen), 44
mpy_path (in module get_mpy), 40

P
path_vars (in module get_mpy), 38
PORT (in module get_lobo), 40
pull() (in module basicgit), 45

R
re_classdef (in module add_class_init), 47
read_exclusion_file() (in module utils), 43
read_path() (in module createstubs), 37
repl_classdef (in module add_class_init), 47
report() (createstubs.Stubber method), 37
resetWDT() (in module createstubs), 36

S
should_ignore() (in module utils), 43
show_help() (in module createstubs), 37
stub_dir (in module get_mpy), 38
STUB_FOLDER (in module get_all_frozen), 44
STUB_FOLDER (in module utils), 42
stub_lvgl

module, 35
stub_path (in module update_stubs), 41
Stubber (class in createstubs), 36
stubber_version (in module createstubs), 36
stubfolder() (in module utils), 42

U
update_stubs

module, 41
utils

module, 41

W
write_object_stub() (createstubs.Stubber method),

37

X
x (in module add_class_init), 47

54 Index

	Boost MicroPython productivity in VSCode
	Licensing

	Approach to collecting stub information
	Stub collection process
	Firmware Stubs format and limitations
	Firmware naming convention

	Using stubs
	Manual configuration
	Using micropy-cli

	VSCode and Pylint configuration
	Recommended order of the stubs in your config:
	Relevant VSCode settings
	Pylance - pyright
	Sample configuration for Pylance

	pylint
	Microsoft Python Language Server settings - Deprecated

	Create Firmware Stubs
	Running the script
	Generating Stubs for a specific Firmware
	Downloading the files
	Custom firmware
	The Unstubbables

	CPython and Frozen modules
	Frozen Modules
	Collect Frozen Stubs (micropython)
	Postprocessing

	Repo structure
	This and sister repos
	Structure of this repo
	Naming Convention and Stub folder structure
	Create a symbolic link
	Windows 10
	Linux/Unix/Mac OS

	Stubs
	Firmware and libraries
	MicroPython firmware and frozen modules [MIT]
	Pycopy firmware and frozen modules [MIT]
	LoBoris ESP32 firmware and frozen modules [MIT, Apache 2]

	Included custom stubs
	Stub source: MicroPython-lib > CPython backports [MIT, Python]
	micropython_pyb [Apache 2]

	References
	Inspiration
	Thonny - MicroPython _cmd_dump_api_info [MIT License]
	MyPy Stubgen
	make_stub_files [Public Domain]

	Documentation on Type hints

	Changelog
	documentation
	createstubs - version 1.4
	createstubs.py - version 1.3.16

	TO-DO (provisional)
	working on it
	read RST files
	documentation
	stubber :
	frozen stubs
	Stub augmentation/ merging typeinformation from copied / generated typerich info
	SYS en GC
	Webrepl

	Developing
	Windows 10
	Github codespaces
	Wrestling with two pythons
	Minification
	Testing
	github actions
	pytests.yml
	run minify-pr.yml

	Testing
	testing & debugging createstubs.py
	platform detection
	Code Coverage

	API Reference
	stub_lvgl
	Module Contents
	Functions

	main
	Module Contents
	Functions

	createstubs
	Module Contents
	Classes
	Functions
	Attributes

	get_mpy
	Module Contents
	Functions
	Attributes

	get_lobo
	Module Contents
	Functions
	Attributes

	update_stubs
	Module Contents

	utils
	Module Contents
	Functions
	Attributes

	get_cpython
	Module Contents
	Functions
	Attributes

	get_all_frozen
	Module Contents
	Functions
	Attributes

	basicgit
	Module Contents
	Functions

	downloader
	Module Contents
	Functions

	add_class_init
	Module Contents
	Functions
	Attributes

	Indices and tables
	Python Module Index
	Index

